1,准备工作,本地下载代码并准备环境,运行命令前需安装git

git clone https://github.com/KwaiVGI/LivePortrait
cd LivePortrait
# create env using conda
conda create -n LivePortrait python=3.9
conda activate LivePortrait
# install dependencies with pip
# for Linux and Windows users
pip install -r requirements.txt
# for macOS with Apple Silicon users
pip install -r requirements_macOS.txt

注意:确保您的系统已安装FFmpeg,包括ffmpegffprobe!不会安装?看这个FFmpeg 【安装教程

2. 下载预训练权重

下载预训练权重的最简单方法是从 HuggingFace 下载:

# first, ensure git-lfs is installed, see: https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage
git lfs install
# clone and move the weights
git clone https://huggingface.co/KwaiVGI/LivePortrait temp_pretrained_weights
mv temp_pretrained_weights/* pretrained_weights/
rm -rf temp_pretrained_weights

 

非海外用户,没有外网环境的朋友,你可以从Google Drive百度云网盘下载所有预训练权重。解压并将它们放在 中./pretrained_weights

确保目录结构如下,或包含:

pretrained_weights
├── insightface
│ └── models
│ └── buffalo_l
│ ├── 2d106det.onnx
│ └── det_10g.onnx
└── liveportrait
├── base_models
│ ├── appearance_feature_extractor.pth
│ ├── motion_extractor.pth
│ ├── spade_generator.pth
│ └── warping_module.pth
├── landmark.onnx
└── retargeting_models
└── stitching_retargeting_module.pth

3.推理使用

# For Linux and Windows
python inference.py
# For macOS with Apple Silicon, Intel not supported, this maybe 20x slower than RTX 4090
PYTORCH_ENABLE_MPS_FALLBACK=1 python inference.py

如果脚本成功运行,你会得到一个名为 的输出mp4文件animations/s6--d0_concat.mp4。此文件包含以下结果:驾驶视频,输入图像或视频,以及生成的结果。

图像

或者您可以通过指定-s和参数-d来更改输入

# source input is an image
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4
# source input is a video ✨
python inference.py -s assets/examples/source/s13.mp4 -d assets/examples/driving/d0.mp4
# more options to see
python inference.py -h

参照视频自动裁剪 📢📢📢

 

要使用您自己的参照视频,我们建议⬇️

  • 将其裁剪为1:1 的宽高比(例如 512×512 或 256×256 像素),或通过 启用自动裁剪--flag_crop_driving_video
  • 重点关注头部区域,与示例视频类似。
  • 尽量减少肩部运动。
  • 确保参照视频的第一帧是正面且表情中性

以下是自动裁剪的案例--flag_crop_driving_video

python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d13.mp4 --flag_crop_driving_video

如果觉得自动裁剪的效果不好,您可以修改--scale_crop_driving_video--vy_ratio_crop_driving_video选项来调整比例和偏移量,或者手动进行调整。

动作模板制作

 

您还可以使用自动生成的以 结尾的运动模板文件来.pkl加速推理,并保护隐私,例如:

python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d5.pkl # portrait animation
python inference.py -s assets/examples/source/s13.mp4 -d assets/examples/driving/d5.pkl # portrait video editing

4. Gradio 可视化界面操作

在Gradio的可视化界面下可以获得更好的体验,适合新手使用,只需运行下面安装代码即可:

# For Linux and Windows users (and macOS with Intel??)
python app.py
# For macOS with Apple Silicon users, Intel not supported, this maybe 20x slower than RTX 4090
PYTORCH_ENABLE_MPS_FALLBACK=1 python app.py

您可以指定--server_port、、--share参数--server_name来满足您的需求!

🚀 它们还提供了加速选项--flag_do_torch_compile。首次推理会触发优化过程(约一分钟),使后续推理速度提高 20-30%。性能提升可能因 CUDA 版本的不同而有所差异。

# enable torch.compile for faster inference
python app.py --flag_do_torch_compile

注意:Windows 和 macOS 不支持此方法。或者,在HuggingFace上轻松尝试一下🤗

5. 推理速度评估

 

下方提供了一个脚本来评估每个模块的推理速度:

# For NVIDIA GPU
python speed.py

以下是使用原生 PyTorch 框架在 RTX 4090 GPU 上推断一帧的结果torch.compile

模型参数(米)模型大小(MB)推理(毫秒)
外观特征提取器0.843.30.82
运动提取器28.121080.84
铲形发电机55.372127.59
变形模块45.531745.21
拼接和重定向模块0.232.30.31

注意:拼接和重定向模块的值代表三个连续 MLP 网络的组合参数数量和总推理时间。

当然如果你没有一张好的显卡,无法本地运行,那么可以在huggingface上免费体验:【点击前往】在线使用

点赞(0) 打赏

评论列表 共有 0 条评论

暂无评论
立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部